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A B S T R A C T

Background: There is a broad interest in deploying deep learning-based classification algorithms to identify
individuals with Alzheimer’s disease (AD) from healthy controls (HC) based on neuroimaging data, such as T1-
weighted Magnetic Resonance Imaging (MRI). The goal of the current study is to investigate whether modern,
flexible architectures such as EfficientNet provide any performance boost over more standard architectures.
Methods: MRI data was sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and processed
with a minimal preprocessing pipeline. Among the various architectures tested, the minimal 3D convolutional
neural network SFCN stood out, composed solely of 3x3x3 convolution, batch normalization, ReLU, and
max-pooling. We also examined the influence of scale on performance, testing SFCN versions with trainable
parameters ranging from 720 up to 2.9 million.
Results: SFCN achieves a test ROC AUC of 96.0% while EfficientNet got an ROC AUC of 94.9 %. SFCN retained
high performance down to 720 trainable parameters, achieving an ROC AUC of 91.4%.
Comparison with existing methods: The SFCN is compared to DenseNet and EfficientNet as well as the
results of other publications in the field.
Conclusions: The results indicate that using the minimal 3D convolutional neural network SFCN with a
minimal preprocessing pipeline can achieve competitive performance in AD classification, challenging the
necessity of employing more complex architectures with a larger number of parameters. This finding supports
the efficiency of simpler deep learning models for neuroimaging-based AD diagnosis, potentially aiding in
better understanding and diagnosing Alzheimer’s disease.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease and the
most common cause of dementia (Jack et al., 2018). Today 10.7% of
the population over the age of 65 has dementia caused by Alzheimer’s
disease (Association, 2022). The cause of AD is not fully understood,
and while there are multiple drugs approved by the FDA, their utility
has been limited due to moderate symptom relief and severe side
effects (Association, 2022; Athar et al., 2021; Loera-Valencia et al.,
2019). There is a pressing need for high-precision diagnostic tools
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that can identify patients with a high risk of developing AD. Such a
tool could be useful for selecting high-risk subjects for clinical trials.
Ideally, the diagnostic should be performed before the onset of full AD,
such that severe neurodegeneration has not taken place. Usually, an
individual will experience mild cognitive impairment (MCI) prior to
being diagnosed with AD. A large group of MCI patients remain stable
and do not progress to AD (Nettiksimmons et al., 2014). These groups
are often called stable MCI (sMCI) and progressive MCI (pMCI). In this
study, we present a deep learning pipeline for classifying AD patients
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from healthy controls (HC) using T1-weighted magnetic resonance
images (MRI) of the brain. AD vs HC classification provides a basis
to evaluate model architecture for a classification task based on two
cognitively distinct groups (Jack et al., 2008). By investigating the
properties of the AD vs HC classification, we hope to gain insight that
will enable sMCI vs pMCI classification.

The field of deep learning is evolving quickly. A major part of this
research is conducted on 2D image classification tasks on datasets such
as ImageNet (Russakovsky et al., 2015). New architectures and training
regimes have greatly improved classification accuracy (Tan and Le,
2019; Canziani et al., 2016). However, MRI brain scans are 3D volumes.
Often 2D architectures are expanded to 3D data by simply replacing 2D
convolutions with their 3D counterparts, assuming that the techniques
that improve performance in 2D natural images generalize across di-
mensions and domains (Uemura et al., 2020; Liang et al., 2018; Ruiz
et al., 2020; Chen et al., 2019).

Peng et al. (2021) challenged this assumption by proposing the 3D
CNN named Simple Fully Convolutional Network (SFCN) for brain-age
prediction on T1w MRI. SFCN was specifically designed to be simple
and ‘‘shallow’’ compared to modern architectures. In this paper, we rig-
orously test SFCN against the popular architectures DenseNet (Huang
et al., 2017), and EfficientNet (Tan and Le, 2019) for AD vs HC
classification. It is well established that, in general, the performance
of a model is highly dependent on the number of parameters (He et al.,
2016; Nakkiran et al., 2021). We investigate this claim explicitly by
studying the performance of the SFCN as we shrink the feature width
towards one.

Data leakage in machine learning refers to the phenomenon where
information from the test data influences the training of the model.
This issue can contribute to systematic errors and biases in reported
results of AD classification as discussed in Wen et al. (2020). For
example, data leakage can occur when a dataset is improperly split
such that one participant with multiple assessments is part of both
the training and test sets. Another typical example is using the test
set for hyper-parameter selection (Kriegeskorte et al., 2009). Oversight
in constructing the datasets can lead to overly optimistic classification
accuracy (i.e. > 98%) (Wen et al., 2020). It is prudent to build on the

D classification literature to understand better the factors contributing
o high performance. Some of the earlier findings may be inflated,
n part due to sub-optimal data management. In the present study,
e make use of a relatively large sample and rely on 5-fold cross-
alidation. We tune hyper-parameters using a validation set, avoiding
rematurely exposing the models to the test set. Hyper-parameters
or all architectures were found using the same search procedure,
nd the final test results were only generated once. We believe this
inimizes the likelihood of data leakage and, subsequently, inflation

f our reported results.
Our primary contribution is demonstrating that the simple and

hallow SFCN architecture can achieve competitive performance with
ore complex architectures like DenseNet and EfficientNet in AD vs
C classification, using minimal preprocessing. Searching for deep

earning architectures is computationally demanding and can consume
ignificant research time. We show that our results are competitive
ith other efforts in the literature, which typically involve much more

omplex pipelines. Additionally, we demonstrate that good results can
e obtained with very small architectures. Smaller models are less
ardware-intensive, making research on AD classification, as well as
linical inference, more accessible. The models with trained weights
nd the dataset splits can be found at: https://github.com/CRAI-OUS/
imple_ad

. Methods

.1. Dataset and preprocessing

We used structural T1-weighted MRIs of the brain from the
2

lzheimer’s Disease Neuroimaging Initiative (ADNI) database (Jack
Table 1
Feature width for the configurations of SFCN. Model 7 is the ‘‘Base’’ model and is
identical to the original SFCN model architecture.

Model Parameters Block 1 Block 2 Block 3 Block 4 Block 5 FcBlock 6

SFCN-0 712 2 2 2 3 3 2
SFCN-1 2677 4 4 4 6 6 4
SFCN-2 4883 4 6 6 8 8 6
SFCN-3 13.3k 4 8 8 16 16 8
SFCN-4 46.4k 4 8 16 32 32 8
SFCN-5 184.8k 8 16 32 64 64 16
SFCN-6 738.0k 16 32 64 128 128 32
SFCN-7-Base 2.95M 32 64 128 256 256 64

et al., 2008). The ADNI was launched in 2003 as a public–private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, positron
emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

We used a minimal preprocessing pipeline to ensure that as much
of the information in the raw data was available to the model, and
to minimize the complexity of the total pipeline. Each brain scan was
skullstripped with HD-BET (Isensee et al., 2019), a deep learning-driven
skullstripping tool. HD-BET was chosen because it is fast (t < 10 s/scan)
compared to other alternatives such as Freesurfer (Fischl, 2012). Rapid
processing is important in making the models more accessible for
clinical use. The scans were resampled to 1 mm isotropic resolution
and cropped to a size of 160 × 192 × 160. The top 5 percentile of the
intensities were clipped and each scan was normalized to the interval
[0, 1]. Clipping the top intensities ensures that noisy outliers do not
shift the contrast when rescaling intensities to [0, 1].

Only HC and AD patients were considered in this paper, which
amounted to 1597 subjects scanned for a total of 5054 MRI sessions.
The data were divided into 5 folds such that all sessions of each subject
were contained in one fold. Each fold was stratified so that the male-
to-female ratio, average age, and diagnosis ratio were matched for
each fold. We created 5 data splits where the train and validation set
consisted of 4 folds, and the remaining fold was used for testing. 10%
of the 4 train–validation folds were used for validation, which was also
balanced with respect to the training set. For testing and validation,
one random session was used for each subject, as opposed to training
when all available sessions were used. This was to avoid a few subjects
with a lot of sessions influencing the test results too much. We refer to
split 0 as the combination of the training, validation, and test set that
uses fold 0 as the test set. An overview of the folds and the stratified
values can be seen in Table A.1.

2.2. Architectures

In this paper, we compare three architectures: DenseNet (Huang
et al., 2017) was chosen since it is a popular architecture in medical
classification (Liang et al., 2018; Uemura et al., 2020; Ruiz et al., 2020).
EfficientNet (Tan and Le, 2019) was chosen since it can be scaled to a
small size, which makes it practical for training on 3D T1 scans. While
published in 2019, it is still competitive on ImageNet classification with
a Top-1 accuracy of 84.3%.

For these two architectures, we used the 3D implementation pro-
vided by Monai (Cardoso et al., 2022). We used DenseNet121 and
EfficientNet-B0 as these were the smallest versions of the models, and
we therefore could train the models using a single GPU per model.

Our focus in this paper is the Simple Fully Convolutional Network
(SFCN) (Peng et al., 2021) architecture. It was originally designed for
brain-age estimation, for which it has achieved state-of-the-art perfor-
mance on (Peng et al., 2021; Gong et al., 2021; Leonardsen et al., 2022).
It has also been successfully applied to AD classification (Leonardsen

et al., 2023; Gupta et al., 2023). As the name suggests, the architecture

https://github.com/CRAI-OUS/simple_ad
https://github.com/CRAI-OUS/simple_ad
https://github.com/CRAI-OUS/simple_ad
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Fig. 1. Diagram of the SFCN architecture. The spatial dimension of the feature space is shown between each block. The feature width for each feature space can be found in
Table 1.
was designed to be simple. SFCN consists of 6 blocks of 3 × 3 × 3
convolution, batch normalization, ReLU activation, and max pooling.
At the final layer, global average pooling is performed, followed by a
single linear layer. A diagram of the architecture can be seen in Fig. 1.

We investigated how the number of trainable parameters affected
the predictive performance. SFCN was down-scaled by keeping the
depth constant and dividing the width of each layer by a multiple of 2.
For the smallest models, we deviated from this rule to avoid layers of
width 1. The models were ranked by their number of parameters from
SFCN-0 to SFCN-7. SFCN-7 is the base model, with the original size as
defined by Peng et al. (2021). The configuration of the down-scaled
SFCN models can be seen in Table 1.

2.3. Hyper parameter selection and training the models

The performance of deep learning models is sensitive to the hyper-
parameters of the models. Different architectures might benefit from
different hyper-parameters. For a fair comparison between different
architectures, we therefore performed a grid-based hyper-parameter
search for all architectures on the training and validation set of split
0, searching for an optimal optimizer, learning rate, and weight decay.
In order to fit the training on a single GPU, we fixed the batch size
to 4. For each architecture, the hyper-parameters that gave the highest
Receiver Operating Characteristic (ROC) Area Under the Curve (AUC)
on the validation set were selected. Each model was then trained with
optimal hyper-parameters on the other 4 splits and tested on their
respective test sets. As optimizers, we tested both AdamW (Loshchilov
and Hutter, 2017) and Stochastic Gradient Descent (SGD). For AdamW
we used 𝛽1 = 0.9, 𝛽2 = 0.95. No momentum was used with SGD.
The models were trained for 50 epochs with binary cross-entropy loss.
The learning rate was scheduled using linear warmup up to epoch 10,
followed by cosine decay. No weight decay was used for normalizing
layers and bias terms (Brock et al., 2021; He et al., 2022; Jia et al.,
2018). Since a model might benefit from early stopping, two sets of the
trainable parameters were saved for each training session, one from the
last epoch and one for the epoch with the highest validation ROC AUC.
We used the checkpoint of the last epoch as our default but investigated
the properties of the best ROC AUC checkpoint. The hyper-parameters
of the grid search can be found in Table A.2 and the optimal parameters
for each model in Table A.3. A summary of the method for training
SFCN-Base on AD vs HC classification can be found in Fig. 2.

When training smaller versions of SFCN, we used the best hyper-
parameters found for SFCN-Base. However, we changed the batch size
from 4 to 16, and we used a linear scaling law to adapt the learning rate
3

to the new batch size (Goyal et al., 2017). Since the smaller configura-
tion of SFCN could benefit from less weight decay, a hyper-parameter
search for weight decay was performed. The hyper-parameters for the
smaller versions of SFCN can be found in Table A.4.

2.4. Metrics

We choose to rely on ROC AUC as our metric for hyper-parameter
selection as well as model evaluation. ROC AUC is in many ways consid-
ered a better performance metric than accuracy and related measures
such as sensitivity and specificity (Dinga et al., 2019). This is partly
due to ROC AUC being invariant to class imbalance. Furthermore, we
consider it a clinical task to decide what rate of false positives and false
negatives can be tolerated in clinical settings. We do, however, report
the accuracies of our models, to facilitate an intuitive interpretation of
model performance and enable comparisons with other methods.

3. Results

3.1. AD vs HC classification

We found that EfficientNet, DenseNet and SFCN-Base performed
similar on the test sets, with an average ROC AUC of 94.9%, 94.9%,
and 96.0%, respectively. SFCN had a slightly higher ROC AUC than
the two other architectures in 4 out of 5 test folds. A comparison of the
ROC AUCs and accuracies across the architectures can be seen in Fig. 3.
Using the checkpoint with the highest validation ROC AUC yielded a
similar result with a test ROC AUC of 95.2% for EfficientNet, 94.7% for
DenseNet, and 95.7% for SFCN.

Next, we compare our results to the results from other publications.
From the list of AD classification publications with ‘‘no data leakage’’
by Wen et al. (2020) we selected the 5 publications with the highest
accuracy. In addition, we selected a few newer publications on AD
classification. The complete comparison can be found in Table 2. Over-
all, our simple pipeline performed competitively with state-of-the-art
methods.

3.2. Qualitative model characteristics

We investigated the correlation of the model predictions. Using the
pre-sigmoid output of the models, we calculated the Pearson Corre-
lation Coefficient (PCC) for pairs of the architectures. We found the
models to be highly correlated, with PCC for DenseNet and EfficientNet
of 0.88, SFCN and EfficientNet of 0.90, and SFCN and DenseNet of 0.91.
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Fig. 2. Summary of the deep learning pipeline for AD vs HC classification using a simple convolutional neural network.

Fig. 3. (a) AD vs HC test accuracy and ROC AUC for EfficientNet, DenseNet, and SFCN-Base for each split. (b) Comparison of average test accuracy and ROC AUC for AD versus
HC using EfficientNet, DenseNet, and SFCN-Base.

Fig. 4. The pre-sigmoid output of each model architecture plotted up against each other. The value on the axis represent the value of the output before the final sigmoid activation
models. Higher values represent that the model given the input has higher confidence in the AD class. Lower values represent higher confidence in the HC class. The scatter plot is
created by combining the 5 test sets. The pre-sigmoid outputs are from the 5 models that trained on the train set belonging to each test set. Pearson correlation coefficient (PCC)
for each model pair is shown in the right corner. The black lines are the class separation lines from the linear discriminant analysis (LDA) models when fitted on the pre-sigmoid
output of the 5 validation sets.
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Fig. 5. AD vs HC classification test accuracy and ROC AUC for SFCN of different sizes. The lines mark the average ROC AUC and accuracy and the points mark the accuracy and
ROC AUC for each of the split.
Table 2
Comparison of AD vs HC deep-learning classifiers on ADNI data. Methods marked with a ‘+’ indicate ‘‘no data leakage’’ as per Wen et al. (2020). Table abbreviations: BA: Balanced
Accuracy. Modailities: T1w: T1 weighted MRI, MD: Mean diffusivity MRI, FDG-PET: Fluorodeoxyglucose positron emission. Preprocessing: The main steps of the preprocessing
pipelines of the methods. If given in the method, the software used in preprocessing is given in parentheses. R: Linear registration, NR: Nonlinear Registration, N: Normalization or
bias field correction , SS: Skullstripping, Seg: Segmentation, LMD: Custom landmark detection, None: No preprocessing was performed. Preprocessing software: SMP: Statistical
Parametric Mapping (Ashburner et al., 2012), FS: Freesurfer (Fischl, 2012), DPARSF: Data Processing Assistant for Resting-State fMRI (Yan and Zang, 2010), HD-BET: (Isensee
et al., 2019), FSL: MRIB Software Library (Woolrich et al., 2009), ANTs: Advanced Normalizations Tools (Tustison et al., 2021), DARTEL: Diffeomorphic Anatomical Registration
Through Exponentiated Lie algebra (Goto et al., 2013). Models Types: 2.5D CNN: CNN, which processes images as slices using 2D convolution and integrates the information
across slices. 3D CNN: CNN with 3D convolution operating on the full image, 3D ROI CNN: 3D CNN that operates on subregions of the image. VAE: Variational Autoencoder,
FEAT MLP: Multilayer perceptron that processes features extracted from the image.

ROC AUC Accuracy Modalities Preprocessing Model Type

Gupta et al. (2023) – 88.6% (BA) T1w R 2.5D CNN
Zhang et al. (2022) 96.1% 93.2% T1w N(ANTs)-SS(ANTS)-R(ANT) 2.5D CNN
Cobbinah et al. (2022) 94.9% 93.1% T1w None VAE,3D CNN
Lu et al. (2022) 96.3% 90.0% T1w SEG(DPARSF)-NR[DARTEL] 3D CNN
Wen et al. (2020) – 89.0% (BA) T1w N(ANTs)-SS(ANTs)-R(ANTs) 3D ROI CNN
Lu et al. (2018) – 84.6% T1w, FDG-PET SEG(FS)-NR(LDDMM) FEAT MLP
Liu et al. (2018a) + 95.0% 91.2% T1w, FDG-PET N-S (Wang et al., 2011), R(FSL) 3D ROI CNN
Liu et al. (2018b) + 95.9% 91.1% T1w LMD 3D ROI CNN
Aderghal et al. (2018)+ – 90.0% T1w, MD N(SPM)-R(SPM)-SS(SPM) 2.5 CNN
Bäckström et al. (2018)+ – 90.1% T1w N(FS)-SS(FS) 3D CNN
Li et al. (2018)+ 92.4% 89.5% T1w SS-N-R(FSL) 2.5 CNN

SFCN-Base (Our implementation) 96.0% 92.1% T1w SS(HD-BET) 3D CNN
To further test if different models picked up different useful features
e used Linear Discriminant Analysis (LDA) to construct new classifiers

rom the output of the three model architectures. We fitted 5 LDAs on
he validation sets and did inference on the test data. In Fig. 4 the pre-
igmoid output of the models can be seen plotted against each other
ogether with the LDA classification line. The LDA models that used all
hree architectures had an average ROC AUC of 96.19%, an increase of
nly 0.19% compared to SFCN.

.3. Small architecture performance

Next, we investigated how the size of SFCN affects the test accuracy.
sing the same hyper-parameters as SFCN-Base we tested 7 smaller
rchitectures. We found that SFCN-3 with 13k parameters achieved a
OC AUC of 94.6%. SFCN-3 has only 0.44% of the parameters of SFCN-
ase, but the relative reduction in ROC AUC is only 1.45%. We further
bserved that the extremely small SFCN-0 width 712 parameters and a
eature width of [2, 2, 2, 3, 3, 2] still have a respectable 91.4% ROC
UC. The performance metrics as a function of model size can be seen

n Fig. 5.
We visualized all the feature maps from SFCN-0 of 4 individuals. We

elected the two subjects from the test set for which the model gave the
ighest and lowest AD scores. The feature maps are displayed in Fig. 6.

. Discussion

We investigated whether modern architectures, proven effective
n ImageNet, increase the AD vs HC classification performance over
5

simpler architectures for structural MRI data. Our results show that the
three architectures, SFCN-Base, DenseNet, and EfficientNet, achieved
approximately the same ROC AUC, with a slight advantage to SFCN-
Base. Considering the extensive efforts in designing these architectures,
this finding is unexpected. SFCN represents a simplistic architecture
and might be considered outdated. This raises questions about why
DenseNet and EfficientNet, which are effective classifiers for 2D tasks,
do not exhibit the same efficiency for AD classification using 3D brain
MRI. Furthermore, why do our results remain competitive with other
studies that employ pretraining or carefully designed pipelines and
architectures?

Although we cannot present strong evidence for why SFCN is suffi-
cient for AD classification, we can hypothesize. DenseNet and Efficient-
Net are architectures built to perform well on ImageNet. ImageNet has
1000 diverse labels, many of which have very distinct characteristics.
In contrast, AD classification only has two classes, with relatively minor
visual differences distinguishing the AD group from the HC group,
especially compared to the visual diversity in ImageNet. The images
are also centered and always facing the same direction, simplifying the
classification task. We see that on the AD classification task the model
capacity can be very small with SFCN-0 having only 712 parameters
and still reaching an ROC AUC of 91.4%. On ImageNet classification,
the drop in performance is observed in models with many orders of
magnitude more parameters than the models in our experiments. The
ImageNet top-1 accuracy of DenseNet drops from 77.85% to 74.8%
when the model size changes from 33M to 7M parameters (Huang et al.,
2017).
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Fig. 6. All feature maps of SFCN-0. The two subjects with the highest and lowest AD-score in the test set are displayed. Each 3D feature map is displayed as 3 orthogonal slices
along with the index of the Block(B) and Feature (F). Zoom in to see details.
A visual inspection of the feature maps of SFCN-0 in Fig. 6 shows
that the network extracts regions of Cerebrospinal fluid (CSF) in the
first layers while discarding the texture in the rest of the brain. This
may be a hint as to why SFCN is able to achieve a high ROC AUC even
with a tiny model. Since CSF is darker then brain tissue in T1w MR
images, a simple threshold is sufficient for an estimate of brain atrophy.
This threshold function can be easily implemented by a linear layer and
a ReLU function, similar to the first layer of SFCN. Understanding how
SFCN processes these regions further down the network is challenging,
due to the shrinking spatial size and convoluted interactions between
the features. However, since one can see all the features of the first
layer, we believe that the CSF segmentation-like behavior is central to
further processing.

We see a potential in utilizing the small version of SFCN, and similar
simple models, for new applications. It could be possible to explicitly
analyze the features of such a model to understand what it has learned.
Feature analysis is usually not feasible when a model has hundreds or
thousands of features, but with a model with no more than 10 features
in each layer, visualizing and interpreting them is a realistic possibility.

Other applications can be in a clinical setting on a machine without
a GPU. In this case, a slight decrease in performance may be acceptable
if the model is small enough to enable rapid analysis on a single CPU.

5. Conclusion

In this paper, we have demonstrated that a simple preprocessing
pipeline and the simple architecture SFCN yielded competitive results
6

on AD vs HC classification relative to two other larger and more
sophisticated model architectures. We found that the SFCN model
architecture could be scaled to a surprisingly small size, with only a
small deterioration in performance. This work suggests that a simple
CNN with minimal preprocessing could serve as a viable baseline when
testing new machine learning pipelines for AD-related classification.

Ethics

The clinical experiments of ADNI have been approved by the ethics
board selected by the participating institutes of ADNI. The Office for
Human Research Protections (OHRP) has reviewed and approved each
ethics board. Informed consent from all participants in ADNI has been
conducted in accordance with US 21 CFR 50.25, the Tri-Council Policy
Statement: Ethical Conduct of Research Involving Humans and the
Health Canada and ICH Good Clinical Practice. All methods in the
current study were carried out following the guidelines and regulations
of ADNI.

Data and code availability

The data used in the current study can be accessed on requested
from ADNI at https://adni.loni.usc.edu/data-samples/access-data/.
The code is available at https://github.com/CRAI-OUS/simple_ad.

https://adni.loni.usc.edu/data-samples/access-data/
https://github.com/CRAI-OUS/simple_ad
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Table A.1
The stratification of the splits. All sessions of ADNI with HC and AD were used. The ratio of AD to HC changes from training to validation and test since AD subjects on average
have fewer sessions.

Subjects Sessions AD/HC M/F Age

Train [857, 857, 857, 857, 857] [2868, 2882, 2885, 2873, 2839] [0.34, 0.35, 0.33, 0.35, 0.35] [0.5, 0.51, 0.51, 0.51, 0.5] [75.78, 75.82, 75.71, 75.77, 75.74]
Validation [215, 215, 215, 215, 215] [215, 215, 215, 215, 215] [0.4, 0.4, 0.4, 0.4, 0.4] [0.49, 0.49, 0.48, 0.49, 0.49] [74.64, 74.62, 74.77, 74.63, 74.6]
Test [268, 268, 268, 268, 268] [268, 268, 268, 268, 268] [0.4, 0.4, 0.4, 0.4, 0.4] [0.49, 0.49, 0.49, 0.49, 0.49] [74.67, 74.78, 74.75, 74.59, 74.71]
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Table A.2
Values used during the grid search over optimizer, learning rate, and weight decay for
each of the main architectures, EfficientNet, DenseNet, and SFCN. Different learning
rates were used for SDG and AdamW.

Parameters Values

Optimizer SDG AdamW
Learning rate [0.005, 0.1, 0.05] [0.001, 0.0003, 0.0001]
Weight Decay [0.001, 0.01, 0.1] [0.001, 0.01, 0.1]

Table A.3
The best hyper-parameters found after the grid search for SFCN, DenseNet, and
EfficientNet.

Model type Learning rate Weight decay Optimizer Batch size

EfficientNet 0.001 0.01 AdamW 4
DenseNet 0.005 0.01 SGD 4
SFCN 0.005 0.1 SGD 4

Table A.4
The best parameters for SFCN after grid search for the different number of parameters.
Model 0 used a batch size of 8 in order to avoid an unknown CUDA error with a batch
size of 16.

Model Learning rate Weight decay Optimizer Batch size

SFCN-0 0.05 0.01 SGD 8
SFCN-1 0.05 0.01 SGD 16
SFCN-2 0.05 0.0001 SGD 16
SFCN-3 0.02 0.01 SGD 16
SFCN-4 0.05 0.01 SGD 16
SFCN-5 0.05 0.01 SGD 16
SFCN-6 0.02 0.1 SGD 8
SFCN-7-Base 0.005 0.1 SGD 4
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